Working with statistics Tipps, Dos & Don'ts

Takeru Shibayama

5 November 2020

INTERACT Online Event

I'm going to talk about...

<u>Use of statistical method – with "real" examples</u>

- Descriptive statistics with MS Excel
- Indexation: adjusting values
- Other types of adjustments
- Stratification dividing data into right groups
- Two-dimensional data scatter plot
 - Correlation & Causality

x

Descriptive statistics with MS Excel

- MS Excel: a powerful tool with many built-in statistical functions.
 - You don't have to do any complex calculation by hand!
 - Spreadsheet can handle a large number of data!
 - Chart with a few clicks easy to visualize the data.
- Explanation in the next slides: based on Excel 2013 or newer
 - Including Office 365

I'm going to talk about...

<u>Use of statistical method – with "real" examples</u>

- Descriptive statistics with MS Excel
- Indexation: adjusting values
- Other types of adjustments
- Stratification dividing data into right groups
- Two-dimensional data scatter plot
 - Correlation & Causality

A sample data (1)

- ... some dataset you've never seen?
- Price of soy source in Japan
- The consumer price survey
 - Data available from https://www.e-stat.go.jp/
 - Released on 23 October 2020

B	5 •∂∘	÷				
File	e Home	Insert	Pag	e Layout	Formula	s
Paste	Cut Copy ~ Format Pa	inter B	libri I	- <u>⊔</u> - ⊞ Font	11 × 1	AÎ J
D7	~	×	~	f _x		
	A			В		
1	Place		Pric	ce Octobe	er 2020	
2	Sappore	D	¥		311	
3	Hakodat	te	¥		285	
4	Asahikav	va	¥		277	
5	Aomor	mori ¥ 271				
6	Hachinol	ne	¥ 271			
7	Moriok	а	¥ 275			
8	Sendai		¥		246	
9	Akita		¥		333	
10	Yamagat	ta	¥		289	
11	Fukushin	na	¥		242	
12	Koriyam	а	¥		325	
13	Mito		¥		228	
14	Hitachi		¥		235	
15	Utsunom	¥ 273				
16	Oyama		¥		246	
17	Maebas	hi	¥		236	
10	Saitama V 201					

5 November 2020

INTERACT Online Event

A sample data (2)

- Data from 81 places
- What is:
 - Maximum?
 - Minimum?
 - Mean? (Average?)
 - Median?
 - Standard deviation?

			A	A		В	/4	Kitakyushu	¥	314
1	Place	Price October 2020	38	Kofu	¥	225	75	Saga	¥	273
2	Sapporo	¥ 311	39	Nagano	¥	281	76	Nagasaki	¥	324
3	Hakodate	¥ 285	40	Matsumoto	¥	236	77	Sasebo	¥	264
4	Asahikawa	¥ 277	41	Gifu	¥	246	78	Kumamoto	¥	253
5	Aomori	¥ 271	42	Shizuoka	¥	249	79	Oita	¥	296
6	Hachinohe	¥ 271	43	Hamamatsu	¥	242	80	Miyazaki	¥	280
7	Morioka	¥ 275	44	Fuji	¥	232	81	Kagoshima	¥	328
8	Sendai	¥ 246	45	Nagoya	¥	273	82	Naha	¥	293
9	Akita	¥ 333	46	Okazaki	¥	253	00			
10	Yamagata	¥ 289	47	Tsu	¥	278				
11	Fukushima	¥ 242	48	Matsusaka	¥	253				
12	Koriyama	¥ 325	49	Otsu	¥	228				
13	Mito	¥ 228	50	Kyoto	¥	269				
14	Hitachi	¥ 235	51	Osaka	¥	241				
15	Utsunomiya	¥ 273	52	Sakai	¥	221				
16	Oyama	¥ 246	53	Hirakata	¥	246				
17	Maebashi	¥ 236	54	Higashiosaka	¥	231				
18	Saitama	¥ 221	55	Kobe	¥	214				
19	Kumagaya	¥ 185	56	Himeji	¥	260				
20	Kawaguchi	¥ 217	57	Nishinomiya	¥	233				
21	Tokorozawa	¥ 253	58	Itami	¥	217				
22	Chiba	¥ 235	59	Nara	¥	236				
23	Sakura	¥ 231	60	Wakayama	¥	282				
24	Urayasu	¥ 253	61	Tottori	¥	301				
25	Ku-area of Tokyo	¥ 246	62	Matsue	¥	285				
26	Hachioji	¥ 215	63	Okavama	¥	260				
27	Tachikawa	¥ 203	64	Hiroshima	¥	302				
28	Fuchu	¥ 309	65	Fukuyama	¥	253				
29	Yokohama	¥ 230	66	Yamaguchi	¥	308				
30	Kawasaki	¥ 230	67	Libe	×	289				
31	Sagamihara	¥ 250	68	Tokushima	×	311				
32	Yokosuka	¥ 234	69	Takamatsu	×	260				
33	Niigata	¥ 253	70	Matsuvama	*	248				
34	Nagaoka	¥ 264	71	Imabari	* ×	240				
35	Toyama	¥ 254	72	Kochi	*	204				
36	Kanazawa	¥ 235	72	Fukuoka	*	251				
37	Fukui	¥ 286	75	PURUOKa	*	260				
38	Kofu	¥ 225								

Excel Functions for Descriptive Statistics

- Maximum: MAX
- Minimum: MIN
- Mean (Average): AVERAGE
- Median: MEDIAN
- Standard deviation: STDEV.P and STDEV.S
 - Your data = Entire population à use STDEV.P
 - Your data = Sample of your entire population à STDEV.S
 - In many case: your data is a sample

SU	JM 👻 :	\times	~	f_{x}	=AVERAGE	(B2:B82)
	А				В	С
83		1				
84	Max.				333	
85	Min.				185	
86	Mean Value (AVE	RAGE)	=AVE	RAGE	B2:B82)	
87	Median				253	
88	Std. Deviatio	on			31.5	

5 November 2020

INTERACT Online Event

I'm going to talk about...

<u>Use of statistical method – with "real" examples</u>

- Descriptive statistics with MS Excel
- Indexation: adjusting values
- Other types of adjustments
- Stratification dividing data into right groups
- Two-dimensional data scatter plot
 - Correlation & Causality

Another sample data

- Include both
 - October 2020 data and
 - October 2019 data
- What is the problem with these two datasets?
- The value of 1 yen this year and last year is <u>different</u>!
- Adjustment by consumer price index

1	Place	Price October 2020	Price October 2019
2	Sapporo	¥ 311	¥ 305
3	Hakodate	¥ 285	¥ 301
4	Asahikawa	¥ 277	¥ 278
5	Aomori	¥ 271	¥ 271
6	Hachinohe	¥ 271	¥ 275
7	Morioka	¥ 275	¥ 246
8	Sendai	¥ 246	¥ 294
9	Akita	¥ 333	¥ 333
10	Yamagata	¥ 289	¥ 289
11	Fukushima	¥ 242	¥ 242
12	Koriyama	¥ 325	¥ 302
13	Mito	¥ 228	¥ 269
14	Hitachi	¥ 235	¥ 235
15	Utsunomiya	¥ 273	¥ 273
16	Oyama	¥ 246	¥ 241
17	Maebashi	¥ 236	¥ 236
18	Saitama	¥ 221	¥ 250
19	Kumagaya	¥ 185	¥ 213
20	Kawaguchi	¥ 217	¥ 213
21	Tokorozawa	¥ 253	¥ 235
22	Chiba	¥ 235	¥ 235
23	Sakura	¥ 231	¥ 239
24	Urayasu	¥ 253	¥ 269
25	Ku-area of	¥ 246	¥ 249
26	Hachioji	¥ 215	¥ 220
27	Tachikawa	¥ 203	¥ 199
28	Fuchu	¥ 309	¥ 299
29	Yokohama	¥ 230	¥ 237
30	Kawasaki	¥ 230	¥ 227
31	Sagamihara	¥ 250	¥ 246
	-		1

Adjustment with index – indexation (1)

- Consumer price index Latest available data: September 2020
 - October price index is not yet available!
 - Alternatively, let's use September indexes from 2020 and 2019!
- Consumer price indexes:
 - (in case of Japan: 2015 price = 100)
 - September 2019: 105.2
 - September 2020: 107.2
- Formula for adjustment:

$$P_{adj} = P_{orig} \times \frac{Index_{20}}{Index_{19}}$$

Adjustment with index – indexation (2)

- Hint: prepare a table with the indexes
- "Translate" the formula into the Excel style

				Noor Style		Sep-20	107.2
		P _{adj}	= P _{orig} × Column C	$\frac{Index_{20}}{Index_{19}} \implies F$	ixed: H3 ixed: H2		
			=C2* \$	H\$3/\$H\$2			
4	A	В	С	D	E F	G	Н
1	Place	Price October 2020	Price October 2019	Price October 2019 after Indexation		Month	Index
2	Sapporo	¥ 311	¥ 305	=C2*(\$H\$3/\$H\$2)		Sep-19	105.2
3	Hakodate	¥ 285	¥ 301	¥ 307		Sep-20	107.2
			1				
4	A	В	С	D	E F	G	н
	Place	Price October 2020	Price October 2019	Price October 2019 after Indexation		Month	Index
	Sapporo	¥ 311	¥ 305	¥ 311		Sep-19	105.2
	Hakodate	¥ 285	¥ INTER 201	ግ ር <u></u> በ (\$ ዙ\$ 2 / \$ H\$ 2)		Sep-20	107.2

5 November 2020

Copy into Row 3, 4, ...

Type into Row 2

12

G

Month

Sep-19

н

Index

105.2

Tipps: Excel Operator "\$"

- Without Operator "\$": relative reference
 - Formula is adjusted when copied into another cell
- With Operator "\$": absolute reference
 - Formula is NOT adjusted when copied into another cell
- Applicable for both columns and rows
 - A1 à Both columns and rows are adjusted.
 - A\$1 à Only rows are fixed & columns are adjusted.
 - \$A1 à Only columns are fixed & rows are adjusted.
 - \$A\$1 à Both columns and rows are not adjusted.
- Previous example: reference to fixed cells for 2019 and 2020 price index à Dollar operator for both columns and rows (\$A\$1)

Adjustment with index – indexation (2)

• Descriptive statistics per dataset:

Descriptive Statistics	Price October 2020	Price October 2019	Price October 2019 after Indexation
Max.	333	355	362
Min.	185	199	203
Mean (AVERAGE)	259	265	270
Median	253	264	269
Std. Deviation	32	32	33

Oct 2020 and Oct 2019 price WITHOUT indexation

Max.	355
Min.	185
Mean	262
Median	260
Std. Deviation	32

• Oct 2020 and Oct 2019 price WITH indexation

Max.	362
Min.	185
Mean	265
Median	260
Std. Deviation	32

Other possible adjustment/indexation

- Wage
- Social security contribution by employer
- Tax
- Exchange rate
- ...

I'm going to talk about...

<u>Use of statistical method – with "real" examples</u>

- Descriptive statistics with MS Excel
- Indexation: adjusting values
- Other types of adjustments
- Stratification dividing data into right groups
- Two-dimensional data scatter plot
 - Correlation & Causality

Data Stratification (1)

- Stratification (stratified sampling):
 - Sampling data from each subpopulation (*stratum*)
 - When each subpopulation has:
 - Different characteristics, and/or
 - Very different distribution (or descriptive statistics)
 - Strata: definition of division of population
 - Collectively exhaustive: covering all stratum altogether
 - Mutually exclusive: no sample in two or more stratum

Hourly un	it cost	Position
€	62.38	Manager
€	29.18	Administrative staff
€	52.34	Engineer
€	24.69	Administrative staff
€	78.11	Manager
€	32.33	Student Employee
€	19.82	Administrative staff
€	42.25	Administrative staff
€	34.10	Engineer
€	39.38	Administrative staff
€	32.31	Engineer
€	40.01	Engineer
€	26.31	Administrative staff
€	19.01	Student Employee
€	35.21	Administrative staff
€	15.21	Engineer
€	14.39	Student Employee
€	13.99	Student Employee
€	35.19	Administrative staff
€	51.04	Engineer
€	90.32	Consultant
€	48.42	Consultant
€	46.21	Engineer
€	27.89	Administrative staff
€	54.32	Manager
€	62.18	Engineer
€	32.33	Administrative staff
€	39.61	Engineer
€	28.39	Administrative staff
€	33.01	Administrative staff

Data Stratification (2)

- Good examples of "strata":
 - Male and Female
 - Full-time and part-time employees at Company X
 - Children, Adults and Elderly people
 - People in Country A and People in Country B, if you're dealing only with these two countries
- Bad examples of "strata"
 - People in Country A and People in Country B, even if you have to deal with Countries C and D, too. (Collectively NOT exhaustive!)
 - Employee in maternity leave, School employee, Civil Servants (Mutually NOT exclusive!)

Data Stratification (3) – Sample size allocation

- Example: Your historical data over 7 years has an hourly salary of 3240 persons in the dataset, and it is known that:
 - 423 persons are managers
 - 1924 persons are administrative staffs
 - 742 persons are engineers or consultants
 - 151 persons are student assistants or trainees
- Percentages of these 4 groups are...
 - % manager: 423/3240 = 13.06%
 - % administrative staffs: 1924/3240 = 59.38%
 - % engineers and consultants: 742/3240 = 22.90%
 - % student assistants and trainees: 151/3240 = 4.46%
- You randomly select your 400 sample from the dataset of the last 3 years (n = 1239), but stratified by the following groups:
 - Manager: 400 x 13.06% = 52 people
 - Administrative staffs: 400 x 59.38% = 238 people
 - Engineers and consultants: 400 x 22.90% = 92 people
 - Student assistants and trainees: 400 x 4.46% = 18 people

I'm going to talk about...

<u>Use of statistical method – with "real" examples</u>

- Descriptive statistics with MS Excel
- Indexation: adjusting values
- Other types of adjustments
- Stratification dividing data into right groups
- Two-dimensional data scatter plot
 - Correlation & Causality

Two-dimensional data (1)

- Two different data around one object, or of two objects
- Examples:
 - [A] Height and [B] weight
 - [A] Car weight and [B] amount of exhaust
 - [A] Temperature and [B] sales of ice cream
- An example from my recent research:
 - [A] Level of tsunami damages, measured as fully destroyed houses per 1000 inhabitants
 - [B] Increase in car ownership

5 November 2020

Two-dimensional data (2)

5 November 2020

Two-dimensional data (3): Linear Regression

Two-dimensional data (4)

- Correlation: statistical relationship between two random variables
- Correlation coefficient (*Pearson correlation coefficient*):
 - A statistic measuring linear correlation between two variables
 - Between -1 and 0: Negative correlation
 - 0: no correlation
 - Between 0 and 1: Positive correlation
 - Excel function: CORREL
- Coefficient of determination (R-Squared)
 - Easy way: simply the square of correlation coefficient

Correlation and Causality

- Be careful! Correlation ≠ Causality
- Example:
 - When sales of ice cream is very good, there are more murder cases. (Therefore we should prohibit ice cream sales to prevent murders.)
 - What's wrong with this sentence?
 - There's another common cause of these two events: temperature
- Correlation may change over time, too!
 - For example: even if you find a correlation between personnel cost and travel cost based on the 2017-2019 data...
 - This may no longer be valid in 2021 because people will have learned online events through COVID-19 pandemic.

End

Contact: takeru.shibayama@tuwien.ac.at

5 November 2020